Chapter

COMPARISON OF PAIRED
SAMPLES

Objectives

In this chapter we study comparisons of paired samples. We will

e demonstrate how to conduct a paired ¢ test. e consider the conditions under which a paired # test
e demonstrate how to construct and interpret a confi- is valid.

dence interval for the mean of a paired difference. e show how paired data may be analyzed using the
e discuss ways in which paired data arise and how sign test and the Wilcoxon signed-rank test.

pairing can be advantageous.

8.1 Introduction

In Chapter 7 we considered the comparison of two independent samples when the
response variable Y'is a quantitative variable. In the present chapter we consider the
comparison of two samples that are not independent but are paired. In a paired
design, the observations (Y7, Y») occur in pairs; the observational units in a pair are
linked in some way, so that they have more in common with each other than with
members of another pair. The following is an example of a paired design.

Example Blood Flow Does drinking coffee affect blood flow, particularly during exercise?
8.1.1 Doctors studying healthy subjects measured myocardial blood flow (MBF)* during
bicycle exercise before and after giving the subjects a dose of caffeine that was

equivalent to drinking two cups of coffee. Table 8.1.1 shows the MBF levels before

(baseline) and after (caffeine) the subjects took a tablet containing 200 mg of caf-

feine.! Figure 8.1.1 shows parallel dotplots of these data, with line segments that

connect the baseline and caffeine readings for each subject so that the change from

“before” to “after” is evident for each subject. m

In Example 8.1.1 the data arise in pairs; the data in a pair are linked by virtue of
being measurements on the same person. A suitable analysis of the data should take
advantage of this pairing. That is, we could imagine an experiment in which some
subjects are studied after being given caffeine and others are studied without ever
being given caffeine; such an experiment would provide two independent samples
of data and could be analyzed using the methods of Chapter 7. But the current
experiment used a paired design. Myocardial blood flow varies from person to person,
with some subjects having high MBF levels both before and after consuming caf-
feine and others having low MBF levels. Knowing a subject’s MBF level at baseline

*MBF was measured by taking positron emission tomography (PET) images after oxygen-15 labeled water was
infused in the patients.
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6.5
Table 8.1.1 Myocardial blood flow
(ml/min/g) for eight subjects
6.0 —
MBF
Baseline Caffeine 5.5 —|
Subject V1 V2
1 6.37 4.52 . >0
2 5.69 5.44 §
4.5 —
3 5.58 4.70
4 527 381 40—
5 5.11 4.06
6 4.89 3.22 3.5 —
7 4.70 2.96
8 3.53 3.20 307 | |
Mean 5.14 3.99 Baseline Caffeine
SD 0.83 0.86 Figure 8.1.1 Dotplots of MBF readings before and after

caffeine consumption, with line segments connecting
readings on each subject

tells us something about how the subject did on caffeine, and vice versa. We want to
use this information when we analyze the data.

In Section 8.2 we show how to analyze paired data using methods based on Stu-
dent’s ¢ distribution. In Sections 8.4 and 8.5 we describe two nonparametric tests for
paired data. Sections 8.3, 8.6, and 8.7 contain more examples and discussion of the
paired design.

8.2 The Paired-Sample t Test and Confidence Interval

In this section we discuss the use of Student’s ¢ distribution to obtain tests and con-
fidence intervals for paired data.

Analyzing Differences

In Chapter 7 we considered how to analyze data from two independent samples.
When we have paired data, we make a simple shift of viewpoint: Instead of con-
sidering Y7 and Y, separately, we consider the difference D, defined as

D=Y —-Y

Note that it is often natural to consider a difference as the response variable of in-
terest in a study. For example, if we were studying the growth rates of plants, we
might grow plants under control conditions for a while at the beginning of a study
and then apply a treatment for one week. We would measure the growth that takes
place during the week after the treatment is introduced as D = Y] — Y,, where
Y, = height one week after applying the treatment and Y, = height before the
treatment is applied.* Sometimes data are paired in a way that is less obvious, but
whenever we have paired data, it is the observed differences that we wish to analyze.

*Exercises 7.2.11 and 7.2.12 both involve such “before versus after” data.
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Let us denote the mean of sample D’s as D. The quantity D is related to the
individual sample means as follows:
D= -Y)
The relationship between population means is analogous:
Mp = M1 — M2

Thus, we may say that the mean of the difference is equal to the difference of the
means. Because of this simple relationship, a comparison of two paired means can
be carried out by concentrating entirely on the D’s.

The standard error for D is easy to calculate. Because D is just the mean of a sin-
gle sample, we can apply the SE formula of Chapter 6 to obtain the following formula:

Sp
Vinp

where sp is the standard deviation of the D’s and np is the number of D’s. The
following example illustrates the calculation.

SEp =

Example Blood Flow Table 8.2.1 shows the blood flow data of Example 8.1.1 and the differ-
8.2.1 ences d.
Note that the mean of the difference is equal to the difference of the means:
d=1.15=514 — 3.99
Figure 8.2.1 shows the distribution of the 8 sample differences.
Table 8.2.1 Myocardial blood flow (ml/min/g) for 0!0 0?5 1?0 1!5 2!0
eight subjects D
MBF
Baseline Caffeine Difference R )
Subject 1 2 d=y-—» .
1 6.37 452 1.85 L5 .
2 5.69 5.44 0.25
3 5.58 4.70 0.88
4 5.27 3.81 1.46 S o .
5 5.11 4.06 1.05 .
6 4.89 3.22 1.67
7 4.70 2.96 1.74
8 3.53 3.20 0.33 0.5 —
Mean 5.14 3.99 1.15 .
SD 0.83 0.86 0.63 : * : : : : : :

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
Normal scores

Figure 8.2.1 Dotplot of differences in MBF at
baseline and after taking caffeine, along with a normal
probability plot of the data
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Example
8.2.2

Example
8.2.3

‘We calculate the standard error of the mean difference as follows:

Sp = 0.63
np = 8
0.63
SEp = —= =022
PR

While the mean of the difference is the same as the difference of the means, note
that the standard error of the mean difference is not the difference of standard
errors of the means. ]

Confidence Interval and Test of Hypothesis

The standard error described previously is the basis for the paired-sample ¢ method
of analysis, which can take the form of a confidence interval or a test of hypothesis.
A 95% confidence interval for pp is constructed as

d + t,,1.005SEp
where the constant 7, (s is determined from Student’s ¢ distribution with
df = np —1

Intervals with other confidence coefficients (such as 90%, 99%, etc.) are con-
structed analogously (using 7 s, fo.005, €tc.). The following example illustrates the
confidence interval.

Blood Flow For the blood flow data, we have df = 8 — 1 = 7. From Table 4 we find
that #; o5 = 2.365; thus, the 95% confidence interval for up, is

0.63
115 + (2.365)(\@)
or
115 + 0.53
or
(0.62, 1.68) -

We can also conduct a ¢ test. To test the null hypothesis

HO: Mp = 0
we use the test statistic
d—0
ty =
SEp

Critical values are obtained from Student’s ¢ distribution (Table 4) with df = np — 1.
The following example illustrates the ¢ test.

Blood Flow For the blood flow data, let us formulate the null hypothesis and nondi-
rectional alternative:

H,y: Mean myocardial blood flow is the same at baseline as it is after taking caffeine.

H 4: Mean myocardial blood flow is different after taking caffeine then at baseline.
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or, in symbols,
H(): Mp = 0
HA: 1255 #0
Let us test H against H 4 at significance level @ = 0.05. The test statistic is

1.15-0
57 0eanve 10
FromTable 4,1; 905 = 3.499 and t; (905 = 5.408. We reject Hy and find that there is
sufficient evidence (0.001 < P < 0.01) to conclude that mean myocardial blood
flow is decreased after taking caffeine. (Using a computer gives the P-value as
P = 0.0013.) (Note that even though there is significant evidence for a decrease in
MBF after taking the caffeine, we cannot conclude that caffeine caused the
decrease. For example, it may be that blood flow decreased due to the passage of
time.) ]

Result of Ignoring Pairing

Suppose that a study is conducted using a paired design, but that the pairing is ig-
nored in the analysis of the data. Such an analysis is not valid because it assumes
that the samples are independent when in fact they are not. The incorrect analysis
can be misleading, as the following example illustrates.

Hunger Rating During a weight loss study each of nine subjects was given either the
active drug m-chlorophenylpiperazine (mCPP) for two weeks and then a placebo
for another two weeks, or else was given the placebo for the first two weeks and
then mCPP for the second two weeks. As part of the study the subjects were asked
to rate how hungry they were at the end of each two-week period. The hunger rating
data are shown in Table 8.2.2.2

Table 8.2.2 Hunger Rating for Nine Women
Hunger rating
Drug (mCPP) Placebo Difference
Subject Y y2 d=yi—»
1 79 78 1
2 48 54 —6
3 52 142 =90
4 15 25 =10
5 61 101 —40
6 107 99 8
7 77 94 -17
8 54 107 =53
9 5 64 =59
Mean 55 85 =30
SD 32 34 33
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Figure 8.2.2 Dotplot of
differences in hunger rating
when on the drug and
when on placebo, along
with a normal probability
plot of the data
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For the hunger rating data, the SE for the mean difference is

33
SEB = % =11

Figure 8.2.2 shows the distribution of the nine sample differences.
A test of

H()Z Mp = 0
Versus
HA: 12%)5) #0
gives a test statistic of
=30 -0
t,=———"— =-272
’ 11

This test statistic has 8 degrees of freedom. Using a computer gives the P-value as
P = 0.027.

Figure 8.2.3 displays the drug and placebo data separately. There is considerable
overlap in the two distributions. This plot does not show compelling evidence that
the drug lowers hunger ratings (as determined from the paired analysis above)
because this plot does not take into account the paired nature of these data.

Looking at the drug and placebo data separately, the two sample SDs are
s1 = 32 and 5, = 34. If we proceed improperly as if the samples were independent
and apply the SE formula of Chapter 7, we obtain

SE. o _ |t %
(Y1=Y,) ny n,
322 342
= + =156



Figure 8.2.3 Parallel
dotplots of hunger rating
when on the drug and
when on placebo
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This SE is quite a bit larger than the value (SEp = 11) that we calculated using the
pairing.

Continuing to (wrongly) proceed as if the samples were independent, the test
statistic is

55 -85
L 156 1.92
The P-value for this test is 0.075, which is much greater than the P-value for the cor-
rect test, 0.027.

To further compare the paired and unpaired analyses, let us consider the 95%
confidence interval for (u; — u,). For the unpaired analysis, formula (6.7.1) yields
15.9 =~ 16 degrees of freedom; this gives a t multiplier of #5 o025 = 2.121 and yields
a confidence interval of

(55 — 85) + (2.121)(15.6)
or
—30 + 33.1
or
(—63.1,3.1)

This erroneous confidence interval is wider than the correct confidence interval
from a paired analysis. A paired analysis yields the narrower interval

—30 + (2.306)(11)
or
—30 + 25.4
or
(—55.4,-4.6)

The paired-sample interval is narrower because it uses a smaller SE; this effect is
slightly offset by a larger value of ¢ yp5 (2.306 versus 2.121).

Why is the paired-sample SE smaller than the independent-samples SE calcu-
lated from the same data (SE = 11versus SE = 15.6)? Table 8.2.2 reveals the rea-
son. The data show that there is large variation from one subject to the next. For
instance, subject 4 has low hunger ratings (both when on the drug and when on
placebo) and subject 6 has high values. The independent-samples SE formula incor-
porates all this variation (expressed through s; and s); in the paired-sample
approach, intersubject variation in hunger rating has no influence on the calcula-
tions because only the D’s are used. By using each subject as her own control, the
experimenter has increased the precision of the experiment. But if the pairing is
ignored in the analysis, the extra precision is wasted. [
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Example
8.2.5

The preceding example illustrates the gain in precision that can result from a
paired design coupled with a paired analysis. The choice between a paired and an
unpaired design will be discussed in Section 8.3.

Conditions for Validity of Student’s t Analysis

The conditions for validity of the paired-sample ¢ test and confidence interval are as
follows:

1. It must be reasonable to regard the differences (the D’s) as a random sample
from some large population.

2. The population distribution of the D’s must be normal. The methods are
approximately valid if the population distribution is approximately normal or
if the sample size (np) is large.

The preceding conditions are the same as those given in Chapter 6; in the present
case, the conditions apply to the D’s because the analysis is based on the D’s. Verifi-
cation of the conditions can proceed as described in Chapter 6. First, the design
should be checked to assure that the D’s are independent of each other, and espe-
cially that there is no hierarchical structure within the D’s. (Note, however, that the
Y ’s are not independent of the Y,’s because of the pairing.) Second, a histogram or
dotplot of the D’s can provide a rough check for approximate normality. A normal
probability plot can also be used to assess normality.

Notice that normality of the Y7’s and Y3’s is not required, because the analysis
depends only on the D’s. The following example shows a case in which the Y;’s and
Y,’s are not normally distributed, but the D’s are.

Squirrels If you walk toward a squirrel that is on the ground, it will eventually run to
the nearest tree for safety. A researcher wondered whether he could get closer to
the squirrel than the squirrel was to the nearest tree before the squirrel would start
to run. He made 11 observations, which are given in Table 8.2.3. Figure 8.2.4 shows

Table 8.2.3 Distances (in inches) from person and from tree when squirrel started
to run
From person From tree Difference
Squirrel V1 2 d=y—»

1 81 137 =56
2 178 34 144
3 202 51 151
4 325 50 275
5 238 54 184
6 134 236 —102
7 240 45 195
8 326 293 33
9 60 277 —217
10 119 83 36
11 189 41 148
Mean 190 118 72
SD 89 101 148




Figure 8.2.4 Normal
probability plots of
distance from squirrel
to person and from
squirrel to tree
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that the distribution of distances from squirrel to person appear to be reasonably
normal, but that the distances from squirrel to tree are far from being normally dis-
tributed. However, panel (c) of Figure 8.2.4 shows that the 11 differences do meet
the normality condition. Since a paired ¢ test analyzes the differences, a ¢ test (or
confidence interval) is valid here.’

Summary of Formulas

For convenient reference, we summarize the formulas for the paired-sample meth-
ods based on Student’s «.

t Test

Standard Error of D

SEp = —2
D \/I’TD
Hoi Mp = 0
d—0
ty =
SEp

95% Confidence Interval for

3 + tO.OZSSEB

Intervals with other confidence levels (e.g., 90%, 99%) are constructed analo-
gously (e.g., using £ gs, f0.005)-

Exercises 8.2.1-8.2.1 1

8.2.1 In an agronomic field experiment, blocks of land
were subdivided into two plots of 346 square feet each.
Each block provided two paired observations: one for
each of the varieties of wheat. The plot yields (Ib) of
wheat are given in the table.*

(a) Calculate the standard error of the mean difference
between the varieties.

(b) Test for a difference between the varieties using a paired
ttest at « = 0.05. Use a nondirectional alternative.

(c) Test for a difference between the varieties the wrong
way, using an independent-samples test. Compare
with the result of part (b).

VARIETY
BLOCK | 2 DIFFERENCE
1 32.1 34.5 —2.4
2 30.6 32.6 -2.0
3 33.7 34.6 -0.9
4 29.7 31.0 -1.3
Mean 31.52 33.17 —1.65
SD 1.76 1.72 0.68




308 Chapter 8 Comparison of Paired Samples

8.2.2 In an experiment to compare two diets for fatten-
ing beef steers, nine pairs of animals were chosen from
the herd; members of each pair were matched as closely
as possible with respect to hereditary factors. The mem-
bers of each pair were randomly allocated, one to each
diet. The following table shows the weight gains (Ib) of
the animals over a 140-day test period on diet 1 (Y7) and
on diet 2 (Y3).

PAIR DIET | DIET2  DIFFERENCE
1 596 498 98
2 422 460 -38
3 524 468 56
4 454 458 —4
5 538 530 8
6 552 482 70
7 478 528 -50
8 564 598 —34
9 556 456 100
Mean 520.4 497.6 22.9
SD 57.1 473 59.3

(a) Calculate the standard error of the mean difference.

(b) Test for a difference between the diets using a paired
t test at o = 0.10. Use a nondirectional alternative.

(c) Construct a 90% confidence interval for up.

(d) Interpret the confidence interval from part (c) in the
context of this setting.

8.2.3 Cyclic adenosine monophosphate (cAMP) is a sub-
stance that can mediate cellular response to hormones. In
a study of maturation of egg cells in the frog Xenopus
laevis, oocytes from each of four females were divided
into two batches; one batch was exposed to progesterone
and the other was not. After two minutes, each batch was
assayed for its cAMP content, with the results given in the
table.® Use a t test to investigate the effect of progesterone
on cAMP. Let H 4 be nondirectional and let « = 0.10.

cAMP (pmol/oocyte)

FROG CONTROL PROGESTERONE d
1 6.01 5.23 0.78
2 2.28 1.21 1.07
3 1.51 1.40 0.11
4 2.12 1.38 0.74
Mean 2.98 231 0.68
SD 2.05 1.95 0.40

8.2.4 The following table shows the amount of weight
loss (kg) for the nine subjects from Example 8.2.4 when
taking the drug mCPP and when taking a placebo.?
(Note that if a subject gained weight, then the recorded
weight loss is negative, as is the case for subject 2 who
gained 0.3 kg when on the placebo.) Use a ¢ test to inves-
tigate the claim that mCPP affects weight loss. Let H 4 be
nondirectional and let @ = 0.01.

WEIGHT CHANGE

SUBJECT MCPP PLACEBO  DIFFERENCE

1 1.1 0.0 1.1

2 1.3 -0.3 1.6

3 1.0 0.6 0.4

4 1.7 0.3 1.4

5 1.4 —0.7 2.1

6 0.1 -0.2 0.3

7 0.5 0.6 —0.1

8 1.6 0.9 0.7

9 =05 -2.0 1.5
Mean 0.91 —0.09 1.00
SD 0.74 0.88 0.72

8.2.5 Refer to Exercise 8.2.4.
(a) Construct a 99% confidence interval for up.

(b) Interpret the confidence interval from part (a) in the
context of this setting.

8.2.6 Under certain conditions, electrical stimulation of
a beef carcass will improve the tenderness of the meat. In
one study of this effect, beef carcasses were split in half;
one side (half) was subjected to a brief electrical current
and the other side was an untreated control. For each
side, a steak was cut and tested in various ways for ten-
derness. In one test, the experimenter obtained a speci-
men of connective tissue (collagen) from the steak and
determined the temperature at which the tissue would
shrink; a tender piece of meat tends to yield a low colla-
gen shrinkage temperature. The data are given in the fol-
lowing table.’

(a) Construct a 95% confidence interval for the mean
difference between the treated side and the control
side.

(b) Construct a 95% confidence interval the wrong
way, using the independent-samples method. How
does this interval differ from the one you obtained
in part (a)?
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COLLAGEN SHRINKAGE TEMPERATURE (°C)

CHIRPS IN 30 MINUTES

CARCASS TREATED SIDE  CONTROL SIDE ~ DIFFERENCE DAY WITH MUSIC ~ WITHOUT MUSIC  DIFFERENCE
1 69.50 70.00 —0.50 1 12 3 9
2 67.00 69.00 -2.00 2 14 1 13
3 70.75 69.50 1.25 3 11 2 9
4 68.50 69.25 —0.75 4 13 1 12
5 66.75 67.75 -1.00 5 20 5 15
6 68.50 66.50 2.00 6 14 3 11
7 69.50 68.75 0.75 7 10 0 10
8 69.00 70.00 -1.00 8 12 2 10
9 66.75 66.75 0.00 9 8 6 2
10 69.00 68.50 0.50 10 13 3 10
11 69.50 69.00 0.50 11 14 2 12
12 69.00 69.75 —0.75 12 15 4 11
13 70.50 70.25 0.25 13 12 3 9
14 68.00 66.25 1.75 14 13 2 11
15 69.00 68.25 0.75 15 8 0 8
Mean 68.750 68.633 0.117 16 18 > 13
SD 1217 1.302 1.118 17 15 3 12
18 12 2 10
8.2.7 Refer to Exercise 8.2.6. Use a ¢ test to test the null 19 17 2 15
hypothesis of no effect against the alternative hypothesis 20 15 4 11
that the electrical treatment tends to reduce the collagen 21 11 3 8
shrinkage temperature. Let « = 0.10. 2 27 4 18
8.2.8 Trichotillomania is a psychiatric illness that causes 23 14 2 12
its victims to have an irresistible compulsion to pull their 24 18 4 14
own hair. Two drugs were compared as treatments for tri- 25 15 5 10
chotillomania in a study involving 13 women. Each 26 8 1 7
woman took clomipramine during one time period and ) 1 5 1
desipramine during another time period in a double-blind 7 3
experiment. Scores on a trichotillomania-impairment 28 16 3 13
scale, in which high scores 1ndlcate. greater impairment, Mean 13.7 28 10.9
were measured on each woman during each time period. D 34 15 3.0

The average of the 13 measurements for clomipramine
was 6.2; the average of the 13 measurements for de-
sipramine was 4.2.° A paired ¢ test gave a value of
t, = 2.47 and a two-tailed P-value of 0.03. Interpret the
result of the ¢ test. That is, what does the test indicate
about clomipramine, desipramine, and hair pulling?

8.2.9 A scientist conducted a study of how often her pet
parakeet chirps. She recorded the number of distinct
chirps the parakeet made in a 30-minute period, some-
times when the room was silent and sometimes when
music was playing. The data are shown in the following
table.” Construct a 95% confidence interval for the mean
increase in chirps (per 30 minutes) when music is playing
over when music is not playing.

8.2.10 Consider the data in Exercise 8.2.9. There are
two outliers among the 28 differences: the smallest value,
which is 2, and the largest value, which is 18. Delete
these two observations and construct a 95% confidence
interval for the mean increase, using the remaining 26
observations. Do the outliers have much of an effect on
the confidence interval?

8.2.11 Invent a paired data set, consisting of five pairs of
observations, for which y; and y, are not equal, and
SEy, > 0 and SEy, > 0,but SEp = 0.
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Example
8.3.1

Example
8.3.2

8.3 The Paired Design

Ideally, in a paired design the members of a pair are relatively similar to each
other—that is, more similar to each other than to members of other pairs—with
respect to extraneous variables. The advantage of this arrangement is that, when
members of a pair are compared, the comparison is free of the extraneous variation
that originates in between-pair differences. We will expand on this theme after
giving some examples.

Examples of Paired Designs

Paired designs can arise in a variety of ways, including the following:

Experiments in which similar experimental units form pairs
Observational studies of identical twins

Repeated measurements on the same individual at two different times
Pairing by time

Experiments with Pairs of Units Often researchers who wish to compare two
treatments will first form pairs of experimental units (pairs of animals, pairs of plots
of land, etc.) that are similar (e.g., animals of the same age and sex or plots of land
with the same type of soil and exposure to wind, rain, and sun). Then one member of
a pair is randomly chosen to receive the first treatment and the other member is
given the second treatment. The following is an example.

Fertilizers for Eggplants In a greenhouse experiment to compare two fertilizer treat-
ments for eggplants, individually potted plants are arranged on the greenhouse
bench in pairs, such that two plants in the same pair are subject to the same
amount of sunlight, the same temperature, and so on. Within each pair, one
(randomly chosen) plant will receive treatment 1 and the other will receive
treatment 2. m

Observational Studies As noted in Section 7.4, randomized experiments are
preferred over observational studies, due to the many confounding variables that
can arise within an observational study. An observational study may tell us that X
and Y are associated, but only an experiment can address the question of whether X
causes Y. If no experiment is possible and an observational study must be carried
out, then it is preferable (although rarely possible) to study identical twins as the ob-
servational units. For example, in a study of the effect of “secondhand smoke” it
would be ideal to enroll several sets of nonsmoking twins for which, in each pair,
one of the twins lived with a smoker and the other twin did not. Because sets of
twins are rarely, if ever, available, matched-pair designs, in which two groups are
matched with respect to various extraneous variables, are often used.!” Here is an
example.

Smoking and Lung Cancer In a case-control study of lung cancer, 100 lung cancer
patients were identified. For each case, a control was chosen who was individually
matched to the case with respect to age, sex, and education level. The smoking habits
of the cases and controls were compared. [
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Repeated Measurements Many biological investigations involve repeated meas-
urements made on the same individual at different times. These include studies of
growth and development, studies of biological processes, and studies in which meas-
urements are made before and after application of a certain treatment. When only
two times are involved, the measurements are paired, as in Example 8.1.1. The fol-
lowing is another example.

Exercise and Serum Triglycerides Triglycerides are blood constituents that are thought
to play a role in coronary artery disease. To see whether regular exercise could
reduce triglyceride levels, researchers measured the concentration of triglycerides
in the blood serum of seven male volunteers, before and after participation in a
10-week exercise program. The results are shown in Table 8.3.1.!! Note that there is
considerable variation from one participant to another. For instance, participant 1
had relatively low triglyceride levels both before and after, while participant 3 had

relatively high levels. ]
Table 8.3.1 Serum triglycerides (mmol/L)

Participant Before After
1 0.87 0.57
2 1.13 1.03
3 3.14 1.47
4 2.14 1.43
5 2.98 1.20
6 1.18 1.09
7 1.60 1.51

Pairing by Time In some situations, pairs are formed implicitly when replicate
measurements are made at different times. The following is an example.

Growth of Viruses In a series of experiments on a certain virus (mengovirus), a
microbiologist measured the growth of two strains of the virus—a mutant strain and
a nonmutant strain—on mouse cells in petri dishes. Replicate experiments were run
on 19 different days. The data are shown in Table 8.3.2. Each number represents the
total growth in 24 hours of the viruses in a single dish.!?

Note that there is considerable variation from one run to another. For instance,
run 1 gave relatively large values (160 and 97), whereas run 2 gave relatively small
values (36 and 55). This variation between runs arises from unavoidable small varia-
tions in the experimental conditions. For instance, both the growth of the viruses
and the measurement technique are highly sensitive to environmental conditions
such as the temperature and CO, concentration in the incubator. Slight fluctuations
in the environmental conditions cannot be prevented, and these fluctuations cause
the variation that is reflected in the data. In this kind of situation the advantage of
running the two strains concurrently (that is, in pairs) is particularly striking. ]

Examples 8.3.3 and 8.3.4 both involve measurements at different times. But
notice that the pairing structure in the two examples is entirely different. In
Example 8.3.3 the members of a pair are measurements on the same individual at
two times, whereas in Example 8.3.4 the members of a pair are measurements on
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Table 8.3.2 Virus growth at twenty-four hours
Nonmutant Mutant Nonmutant Mutant
Run strain strain Run strain strain
1 160 97 11 61 15
2 36 55 12 14 10
3 82 31 13 140 150
4 100 95 14 68 44
5 140 80 15 110 31
6 73 110 16 37 14
7 110 100 17 95 57
8 180 100 18 64 70
9 62 6 19 58 45
10 43 7

two petri dishes at the same time. Nevertheless, in both examples the principle of
pairing is the same: Members of a pair are similar to each other with respect to
extraneous variables. In Example 8.3.4 time is an extraneous variable, whereas in
Example 8.3.3 the comparison between two times (before and after) is of primary
interest and interperson variation is extraneous.

Purposes of Pairing

Pairing in an experimental design can serve to reduce bias, to increase precision, or
both. Usually the primary purpose of pairing is to increase precision.

We noted in Section 7.4 that pairing or matching can reduce bias by controlling
variation due to extraneous variables. The variables used in the matching are neces-
sarily balanced in the two groups to be compared and therefore cannot distort the
comparison. For instance, if two groups are composed of age-matched pairs of peo-
ple, then a comparison between the two groups is free of any bias due to a difference
in age distribution.

In randomized experiments, where bias can be controlled by randomized
allocation, a major reason for pairing is to increase precision. Effective pairing
increases precision by increasing the information available in an experiment. An
appropriate analysis, which extracts this extra information, leads to more powerful
tests and narrower confidence intervals. Thus, an effectively paired experiment is
more efficient; it yields more information than an unpaired experiment with the
same number of observations.

We saw an instance of effective pairing in the hunger rating data of Example
8.2.4. The pairing was effective because much of the variation in the measurements
was due to variation between subjects, which did not enter the comparison between
the treatments. As a result, the experiment yielded more precise information about
the treatment difference than would a comparable unpaired experiment—that is, an
experiment that would compare hunger ratings of nine women given mCPP to
hunger ratings of nine different control women who were given the placebo.

The effectiveness of a given pairing can be displayed visually in a scatterplot
of Y, against Yy; each point in the scatterplot represents a single pair (Y, Y5).
Figure 8.3.1 shows a scatterplot for the virus growth data of Example 8.3.4,
together with a boxplot of the differences; each point in the scatterplot repre-
sents a single run. Notice that the points in the scatterplot show a definite upward
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trend. This upward trend indicates the effectiveness of the pairing: Measurements
on the same run (i.e., the same day) have more in common than measurements on
different runs, so that a run with a relatively high value of Y; tends to have a rel-
atively high value of Y5, and similarly for low values.

Note that pairing is a strategy of design, not of analysis, and is therefore carried
out before the Y’s are observed. It is not correct to use the observations themselves
to form pairs. Such a data manipulation could severely distort the experimental
results and could be considered scientific fraud.

Randomized Pairs Design versus Completely Randomized Design

In planning a randomized experiment, the experimenter may need to decide
between a paired design and a design that uses random assignment without any
pairing, called a completely randomized design. We have said that effective pairing
can greatly enhance the precision of an experiment. On the other hand, pairing in an
experiment may not be effective, if the observed variable Y is not related to the
factors used in the pairing. For instance, suppose pairs were matched on age only,
but in fact Y turned out not to be age related. It can be shown that ineffective pair-
ing can actually yield less precision than no pairing at all. For instance, in relation to
a t test, ineffective pairing would not tend to reduce the SE, but it would reduce the
degrees of freedom, and the net result would be a loss of power.

The choice of whether to use a paired design depends on practical considera-
tions (pairing may be expensive or unwieldy) and on precision considerations. With
respect to precision, the choice depends on how effective the pairing is expected to
be. The following example illustrates this issue.

Fertilizers for Eggplants A horticulturist is planning a greenhouse experiment with
individually potted eggplants. Two fertilizer treatments are to be compared, and the
observed variable is to be Y = yield of eggplants (pounds). The experimenter
knows that Y is influenced by such factors as light and temperature, which vary
somewhat from place to place on the greenhouse bench. The allocation of pots to
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positions on the bench could be carried out according to a completely randomized
design, or according to a paired design, as in Example 8.3.1. In deciding between
these options, the experimenter must use her knowledge of how effective the pair-
ing would be —that is, whether two pots sitting adjacent on the bench would be very
much more similar in yield than pots farther apart. If she judges that the pairing
would not be very effective, she may opt for the completely randomized design. m

Note that effective pairing is not the same as simply holding experimental con-
ditions constant. Pairing is a way of organizing the unavoidable variation that still
remains after experimental conditions have been made as constant as possible. The
ideal pairing organizes the variation in such a way that the variation within each pair
is minimal and the variation between pairs is maximal.

Choice of Analysis

The analysis of data should fit the design of the study. If the design is paired, a
paired-sample analysis should be used; if the design is unpaired, an independent-
samples analysis (as in Chapter 7) should be used.

Note that the extra information made available by an effectively paired design
is entirely wasted if an unpaired analysis is used. (We saw an illustration of this in
Example 8.2.4.) Thus, the paired design does not increase efficiency unless it is
accompanied by a paired analysis.

Exercises 8.3.1-8.3.4

8.3.1 (Sampling exercise) This exercise illustrates the
application of a matched-pairs design to the population
of 100 ellipses (shown with Exercise 3.1.1). The accom-
panying table shows a grouping of the 100 ellipses into
50 pairs.

ELLIPSE ID ELLIPSE ID ELLIPSE ID
PAIR  NUMBERS | PAIR NUMBERS | PAIR NUMBERS

01 20 45 | 18 11 46 | 35 16 66
02 03 49 | 19 09 29 | 36 18 58
03 07 27 | 20 19 39 | 37 30 50
04 42 8 |21 00 10 | 38 76 86
05 81 91 | 22 40 55 | 39 17 83
06 38 72 |23 21 56 | 40 04 52
07 60 70 | 24 08 62 | 41 12 64
08 31 61 | 25 24 78 | 42 23 57
09 77 89 | 26 67 93 | 43 98 99
10 01 41 | 27 35 80 | 44 36 96
11 14 48 | 28 74 88 | 45 44 84
12 59 87 | 29 94 97 | 46 06 51
13 22 68 |30 02 28 | 47 8 90
14 47 79 | 31 26 71 | 48 37 63
15 05 95 | 32 25 65 | 49 43 69
16 53 73 |33 15 75 | 50 34 54
17 13 33 | 34 32 92

To better appreciate this exercise, imagine the follow-
ing experimental setting. We want to investigate the effect
of a certain treatment, T, on the organism C. ellipticus. We
will observe the variable Y = length. We can measure
each individual only once, and so we will compare » treat-
ed individuals with n untreated controls. We know that the
individuals available for the experiment are of various
ages, and we know that age is related to length, so we have
formed 50 age-matched pairs, some of which will be used
in the experiment. The purpose of the pairing is to increase
the power of the experiment by eliminating the random
variation due to age. (Of course, the ellipses do not actual-
ly have ages, but the pairing shown in the table has been
constructed in a way that simulates age matching.)

(a) Use random digits (from Table 1 or your calculator)
to choose a random sample of five pairs from the list.

(b) For each pair, use random digits (or toss a coin) to
randomly allocate one member to treatment (T) and
the other to control (C).

(c) Measure the lengths of all 10 ellipses. Then, to simu-
late a treatment effect, add 6 mm to each length in
the T group.

(d) Apply a paired-sample ¢ test to the data. Use a
nondirectional alternative and let « = 0.05.

(e) Did the analysis of part (d) lead you to a Type II
error?

8.3.2 (Continuation of Exercise 8.3.1) Apply an inde-
pendent-samples ¢ test to your data. Use a nondirectional



alternative and let « = 0.05. Does this analysis lead you
to a Type II error?

8.3.3 (Sampling exercise) Refer to Exercise 8.3.1.
Imagine that a matched-pairs experiment is not practical
(perhaps because the ages of the individuals cannot be
measured), so we decide to use a completely randomized
design to evaluate the treatment T.

(a) Use random digits (from Table 1 or your calculator)
to choose a random sample of 10 individuals from
the ellipse population (shown with Exercise 3.1.1).
From these 10, randomly allocate 5 to T and 5 to C.
(Or, equivalently, just randomly select 5 from the
population to receive T and 5 to receive C.)

8.4 The Sign Test
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(b) Measure the lengths of all 10 ellipses. Then, to simu-
late a treatment effect, add 6 mm to each length in
the T group.

(c) Apply an independent-samples ¢ test to the data. Use
a nondirectional alternative and let « = 0.05.

(d) Did the analysis of part (c) lead you to a Type II error?
8.3.4 Refer to each of the following exercises. Construct

a scatterplot of the data. Does the appearance of the scat-
terplot indicate that the pairing was effective?

(a) Exercise 8.2.1
(b) Exercise 8.2.2
(c) Exercise 8.2.6

The sign test is a nonparametric test that can be used to compare two paired sam-
ples. It is not particularly powerful, but it is very flexible in application and is espe-
cially simple to use and understand —a blunt but handy tool.

Method

Like the paired-sample ¢ test, the sign test is based on the differences

D=Y -1

The only information used by the sign test is the sign (positive or negative) of
each difference. If the differences are preponderantly of one sign, this is taken as
evidence for the alternative hypothesis. The following examples illustrate the sign test.

Example
8.4.1

Skin Grafts Skin from cadavers can be used to provide temporary skin grafts for
severely burned patients. The longer such a graft survives before its inevitable rejec-

tion by the immune system, the more the patient benefits. A medical team investi-
gated the usefulness of matching graft to patient with respect to the HL-A (Human
Leukocyte Antigen) antigen system. Each patient received two grafts, one with close
HL-A compatibility and the other with poor compatibility. The survival times (in
days) of the skin grafts are shown in the Table 8.4.1.13

Notice that a ¢ test could not be applied here because two of the observations
are incomplete; patient 3 died with a graft still surviving and the observation on
patient 10 was incomplete for an unspecified reason. Nonetheless, we can proceed
with a sign test, since the sign test depends only on the sign of the difference for each
patient and we know that Y; — Y, is positive for both of these patients.

Let us carry out a sign test to compare the survival times of the two sets of skin
grafts using @ = 0.05. A directional research (alternative) hypothesis is appropriate

for this experiment:

H 4: Skin grafts tend to last longer when the HL-A compatibility is close.

The null hypothesis is

Hy: The survival time distribution is the same for close compatibility as it is
for poor compatibility.
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Table 8.4.1 Skin graft survival times
HL-A COMPATIBILITY
Close Poor Sign of
Patient n Y2 d=y—»

1 37 29 +

2 19 13 +

3 57+ 15 +

4 93 26 +

5 16 11 +

6 23 18 +

7 20 26 -

8 63 43 +

9 29 18 +

10 60+ 42 +
11 18 19 -

The first step is to determine the following counts:
N; = Number of positive differences
N- = Number of negative differences

Because H, is directional and it predicts that most of the differences will be
positive, the test statistic By is

B, = N,
For the present data, we have

N, =9

N_=2

B, =9

The next step is to find the P-value. We use the letter B in labeling the test sta-
tistic B, because the distribution of B, is based on the binomial distribution. Let p
represent the probability that a difference will be positive. If the null hypothesis is
true, then p = 0.5. Thus, the null distribution of By is a binomial with n = 11 and
p = 0.5. That is, the null hypothesis implies that the sign of each difference is like
the result of a coin toss, with heads corresponding to a positive difference and tails
to a negative difference.

For the skin graft data, the P-value for the test is the probability of getting 9 or
more positive differences in 11 patients if p = 0.5. This is the probability that a
binomial random variable with n = 11 and p = 0.5 will be greater than or equal
to 9. Using the binomial formula from Chapter 3, or a computer, we find that this
probability is 0.03272.*

Because the P-value is less than o, we find significant evidence for H, that
skin grafts tend to last longer when the HL-A compatibility is close than when it is
poor. [

*Later in this section we shall learn how to use a table to compute these P-values; however, if you have covered
the optional section on the binomial distribution, you can compute this probability using the binomial formula

11Co(0.5)°(0.5)% + 11C10(0.5)'°(0.5)" + 1,C1(0.5)' = 0.02686 + 0.00537 + 0.00049 = 0.03272
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Growth of Viruses Table 8.4.2 shows the virus growth data of Example 8.3.4, together
with the signs of the differences.

Table 8.4.2 Virus growth at twenty-four hours
Nonmutant Mutant Nonmutant Mutant
strain strain Sign of strain strain Sign of

Run Y1 y2 d =y —y, | Run " 2 d=yn-—y

1 160 97 + 11 61 15 +

2 36 55 - 12 14 10 +

3 82 31 + 13 140 150 -

4 100 95 + 14 68 44 +

5 140 80 + 15 110 31 +

6 73 110 - 16 37 14 +

7 110 100 + 17 95 57 +

8 180 100 + 18 64 70 -

9 62 6 + 19 58 45 +

10 43 7 +

Let’s carry out a sign test to compare the growth of the two strains, using
a = 0.10. The null hypothesis and nondirectional alternative are
Hy: The two strains of virus grow equally well.
H 4: One of the strains grows better than the other.
For these data,
N+ = 15
N_=4
When the alternative is nondirectional, By is defined as

B, = Larger of N, and N-

so for the virus growth data,
B, =15

The P-value for the test is the probability of getting 15 or more successes,
plus the probability of getting 4 or fewer successes, in a binomial experiment with
n = 19. We could use the binomial formula to calculate the P-value. As an alterna-
tive, critical values and P-values for the sign test are given in Table 7 (at the end of
the book). Using Table 7 with np = 19, we obtain the critical values and correspon-
ding P-values shown in Table 8.4.3:

Table 8.4.3 Critical values and P-values for the sign test when np = 19

np 0.20

0.10 0.05 0.02 0.01 0.002 0.001

19 13 0.167

14 0.064 15 0.019 15 0.019 16 0.004 17 0.0007 17 0.0007

From the table we see that for B; = 15 the P-value is 0.019, so there is signifi-
cant evidence for H 4. That is, we reject Hy and conclude that the data provide signif-
icant evidence that the nonmutant strain grows better (at 24 hours) than the mutant
strain of the virus. ]
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Example

8.4.3

Bracketing the P-Value Like the Wilcoxon-Mann-Whitney test, the sign test has a
discrete null distribution. Certain critical value entries in Table 7 are blank, for in
some cases the most extreme data possible do not lead to a small P-value. Table 7
has another peculiarity that is not shared by the Wilcoxon-Mann-Whitney test:
Some critical values appear more than once in the same row due to the discreteness
of the null distribution.

Directional Alternative To use Table 7 if the alternative hypothesis is directional,
we proceed with the familiar two-step procedure:

Step 1. Check directionality (see if the data deviate from H in the direction speci-
fied by H,).
(a) If not, the P-value is greater than 0.50.
(b) If so, proceed to step 2.

Step 2. The P-value is half what it would be if H 4 were nondirectional.

Caution Note that Table 7, for the sign test, and Table 4, for the ¢ test, are organized
differently: Table 7 is entered with np, while Table 4 is entered with (df = np — 1).

Treatment of Zeros It may happen that some of the differences (Y; — Y;) are
equal to zero. Should these be counted as positive or negative in determining B;? A
recommended procedure is to drop the corresponding pairs from the analysis and
reduce the sample size np accordingly. In other words, each pair whose difference is
zero is ignored entirely; such pairs are regarded as providing no evidence against H|
in either direction. Notice that this procedure has no parallel in the ¢ test; the ¢ test
treats differences of zero the same as any other value.

Null Distribution Consider an experiment with 10 pairs, so that np = 10.If H is true,
then the probability distribution of N, is a binomial distribution with » = 10 and
p = 0.5.Figure 8.4.1(a) shows this binomial distribution, together with the associat-
ed values of N, and N_. Figure 8.4.1(b) shows the null distribution of By, which is a
“folded” version of Figure 8.4.1(a). (We saw a similar relationship between parts (a)
and (b) of Figure 7.10.4.)

If N, is 7 and H 4 is directional (and predicts that positive differences are more
likely than negative differences), then the P-value is the probability of 7 or more (+)
signs in 10 trials. Using the binomial formula from Chapter 3, or a computer, we find

N 0.4 —
0.20 —
0.3 -
B £z
E i
= £ 02
S 0.10 S
=¥ =9
| 0.1 —
0.00 4 - ‘ 0.0 — ‘
I I I I I I I I I I I
0 2 6 8 10 N+ 5 6 7 8 9 10 By
10 8 4 2 0 N (b)

(a)

Figure 8.4.1 Null distributions for the sign test when n,; = 10. (a) Distribution of N, and N_ and (b) distribution of B;.
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that this probability is 0.17188.* This value (0.17188) is the sum of the shaded bars in
the right-hand tail in Figure 84.1(a). If H, is nondirectional, then the
P-value is the sum of the shaded bars in the left-hand tail and of the right-hand tail
of Figure 8.4.1(a). The two shaded areas are both equal to 0.17188; consequently, the
total shaded area, which is the P-value, is

P =2(0.17188) = 0.34376 ~ 0.34

In terms of the null distribution of By, the P-value is an upper-tail probability;
thus, the sum of the shaded bars in Figure 8.4.1(b) is equal to 0.34. ]

How Table 7 Is Calculated Throughout your study of statistics you are asked to
take on faith the critical values given in various tables. Table 7 is an exception; the
following example shows how you could (if you wished to) calculate the critical val-
ues yourself. Understanding the example will help you to appreciate how the other
tables of critical values have been obtained.

Suppose np = 10. We saw in Example 8.4.3 that
If B; = 7,the P-value of the data is 0.34376.

Similar calculations using the binomial formula show that

If B; = 8, the P-value of the data is 0.10938.
If B; = 9, the P-value of the data is 0.02148.
If B; = 10, the P-value of the data is 0.00195.

For np = 10, the critical values from Table 7 are reproduced in Table 8.4.4.

Table 8.4.4 Critical values and P-values for the sign test when np = 10

np

0.20

0.10 0.05 0.02 0.01 0.002 0.001

10

8 0.109

9 0.021 9 0.021 10 0.002 10 0.002 10 0.0020

The smallest value of B; that gives a P-value less than 0.20 is By = §, so this is
the entry in the 0.20 column. For & = 0.10 or a = 0.05, B; = 9 is needed. The most
extreme possibility, By = 10, gives a P-value of 0.00195, which is rounded to 0.0020
in the table. It is not possible to obtain a nondirectional P-value as small as 0.001, so
that entry is left blank. ]

Applicability of the Sign Test

The sign test is valid in any situation where the D’s are independent of each other
and the null hypothesis can be appropriately translated as

Hy: Pr{Dis positive} = 0.5

Thus, the sign test is distribution free; its validity does not depend on any condi-
tions about the form of the population distribution of the D’s. This broad validity is
bought at a price: If the population distribution of the D’s is indeed normal, then the
sign test is much less powerful than the ¢ test.

*Applying the binomial formula we have

10C7(0.5)7(0.5)% + 19C5(0.5)%(0.5)* + 19Co(0.5)°(0.5)" + 15C10(0.5)"°
= 0.11719 + 0.04394 + 0.00977 + 0.00098 = 0.17188
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Example
8.4.5

The sign test is useful because it can be applied quickly and in a wide variety of
settings. In fact, sometimes the sign test can be applied to data that do not permit a ¢
test at all, as was shown in Example 8.4.1. There is another test for paired data, the
Wilcoxon signed-ranks test, which is presented in Section 8.5, that is generally more
powerful than the sign test and yet is distribution free. However, the Wilcoxon
signed-ranks test is more difficult to carry out than the sign test and, like the ¢ test,
there are situations in which it cannot be conducted. The following is another exam-
ple in which only a sign test is possible.

THC and Chemotherapy Chemotherapy for cancer often produces nausea and vomit-
ing. The effectiveness of THC (tetrahydrocannabinol—the active ingredient of
marijuana) in preventing these side effects was compared with the standard drug
Compazine. Of the 46 patients who tried both drugs (but were not told which was
which), 21 expressed no preference, while 20 preferred THC and 5 preferred
Compazine. Since “preference” indicates a sign for the difference, but not a magni-
tude, a ¢ test is impossible in this situation. For a sign test, we have n,; = 25
and B, = 20, so that the P-value is 0.004; even at & = 0.005 we would reject Hj and
find that the data provide sufficient evidence to conclude that THC is preferred to

Compazine.'*

Exercises 8.4.1-8.4.1 1

8.4.1 Use Table 7 to find the P-value for a sign test
(against a nondirectional alternative), assuming that
np = 9and
(a) B, =6
(c) B,=38

(b) B, =7
(d) B,=9
8.4.2 Use Table 7 to find the P-value for a sign test

(against a nondirectional alternative), assuming that
np = 15 and

(a) B, =10 (b) B, =11
(c) B, =12 (d) B, =13
(e) B, =14 (f) B,=15

8.4.3 A group of 30 postmenopausal women were given
oral conjugated estrogen for one month. Plasma levels of
plasminogen-activator inhibitor type 1 (PAI-1) went
down for 22 of the women, but went up for 8 women."
Use a sign test to test the null hypothesis that oral conju-
gated estrogen has no effect on PAI-1 level. Use « = 0.10
and use a nondirectional alternative.

8.4.4 Can mental exercise build “mental muscle”? In one
study of this question, 12 littermate pairs of young male
rats were used; one member of each pair, chosen at ran-
dom, was raised in an “enriched” environment with toys
and companions, while its littermate was raised alone in

an “impoverished” environment. After 80 days, the ani-
mals were sacrificed and their brains were dissected by a
researcher who did not know which treatment each rat
had received. One variable of interest was the weight of
the cerebral cortex, expressed relative to total brain
weight. For 10 of the 12 pairs, the relative cortex weight
was greater for the “enriched” rat than for his “impover-
ished” littermate; in the other 2 pairs, the “impoverished”
rat had the larger cortex. Use a sign test to compare the
environments at « = 0.05; let the alternative hypothesis
be that environmental enrichment tends to increase the
relative size of the cortex.'®

8.4.5 Twenty institutionalized epileptic patients partici-
pated in a study of a new anticonvulsant drug, valproate.
Ten of the patients (chosen at random) were started on
daily valproate and the remaining 10 received an identi-
cal placebo pill. During an eight-week observation peri-
od, the numbers of major and minor epileptic seizures
were counted for each patient. After this, all patients
were “crossed over” to the other treatment, and seizure
counts were made during a second eight-week observa-
tion period. The numbers of minor seizures are given in
the accompanying table.!” Test for efficacy of valproate
using the sign test at a = 0.05. Use a directional alterna-
tive. (Note that this analysis ignores the possible effect of
time —that is, first versus second observation period.)
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PATIENT PLACEBO VALPROATE PATIENT PLACEBO VALPROATE
NUMBER PERIOD PERIOD NUMBER PERIOD PERIOD
1 37 5 11 7 8
2 52 22 12 9 8
3 63 41 13 65 30
4 2 4 14 52 22
5 25 32 15 6 11
6 29 20 16 17 1
7 15 10 17 54 31
8 52 25 18 27 15
9 19 17 19 36 13
10 12 14 20 5 5

8.4.6 An ecological researcher studied the interaction
between birds of two subspecies, the Carolina Junco and
the Northern Junco. He placed a Carolina male and a
Northern male, matched by size, together in an aviary and
observed their behavior for 45 minutes beginning at
dawn. This was repeated on different days with different
pairs of birds. The table shows counts of the episodes in
which one bird displayed dominance over the other —for
instance, by chasing it or displacing it from its perch.'®
Use a sign test to compare the subspecies. Use a nondi-
rectional alternative and let « = 0.01.

NUMBER OF EPISODES IN WHICH
NORTHERN WAS  CAROLINA WAS

PAIR DOMINANT DOMINANT
1 0 9
2 0 6
3 0 22
4 2 16
5 0 17
6 2 33
7 1 24
8 0 40

84.7

(a) Suppose a paired data set has np = 4 and B, = 4.
Calculate the exact P-value of the data as ana-
lyzed by the sign test (against a nondirectional
alternative).

(b) Explain why, in Table 7 with np = 3, no critical val-
ues are given in any column.

8.4.8 Suppose a paired data set has np = 15. Calculate
the exact P-value of the data as analyzed by the sign test
(against a nondirectional alternative) if B; = 15.

8.4.9 The study described in Example 8.2.4,involving the
compound mCPP, included a group of men. The men were
asked to rate how hungry they were at the end of each
two-week period and differences were computed (hunger
rating when taking mCPP-hunger rating when taking the
placebo). The distribution of the differences was not nor-
mal. Nonetheless, a sign can be conducted using the fol-
lowing information: Out of eight men who recorded
hunger ratings, three reported greater hunger on mCPP
than on the placebo and five reported lower hunger on
mCPP than on the placebo.? Conduct a sign test at the
a = 0.10 level; use a nondirectional alternative.

8.4.10 Refer to Exercise 8.4.9. Calculate the exact
P-value of the data as analyzed by the sign test. (Note: H 4
is nondirectional.)

8.4.11 (Power) A researcher is planning to conduct an
experiment to compare two treatments in which matched
pairs of subjects will be given the treatments and a sign
test will be used, with a nondirectional alternative, to ana-
lyze the difference in responses.

Suppose the researcher believes that one treatment
will always do better than the other. How many pairs does
he need to have in the experiment if he wants to be able to
reject Hywhen o = 0.05? If one treatment “wins” in every
pair, what will be the P-value from the resulting test?

8.5 The Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test, like the sign test, is a nonparametric method that
can be used to compare paired samples. Conducting a Wilcoxon signed-rank test is
somewhat more complicated than conducting a sign test, but the Wilcoxon test is
more powerful than the sign test. Like the sign test, the Wilcoxon signed-rank test
does not require that the data be a sample from a normally distributed population.
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The Wilcoxon signed-rank test is based on the set of differences, D = Y; — Y.
It combines the main idea of the sign test—“look at the signs of the differences” —
with the main idea of the paired ¢ test—“look at the magnitudes of the differences.”

Method

The Wilcoxon signed-rank test proceeds in several steps, which we present here in
the context of an example.

Example Nerve Cell Density For each of nine horses, a veterinary anatomist measured the
8.5.1 density of nerve cells at specified sites in the intestine. The results for site I (mid-
region of jejunum) and site II (mesenteric region of jejunum) are given in the
accompanying table.!® Each density value is the average of counts of nerve cells in
five equal sections of tissue. The null hypothesis of interest is that in the population

of all horses there is no difference between the two sites.

1. The first step in the Wilcoxon signed-rank test is to calculate the differences, as
shown in Table 8.5.1.

Table 8.5.1 Nerve cell density at each of two sites
Animal Site I Site IT Difference
1 50.6 38.0 12.6
2 39.2 18.6 20.6
3 35.2 23.2 12.0
4 17.0 19.0 2.0
5 11.2 6.6 4.6
6 14.2 16.4 2.2
7 24.2 14.4 9.8
8 37.4 37.6 -0.2
9 35.2 24.4 10.8

2. Next we find the absolute value of each difference.
3. We then rank these absolute values, from smallest to largest, as shown in

Table 8.5.2.
Table 8.5.2
Animal Difference, d |d| Rank of |d|
1 12.6 12.6 8
2 20.6 20.6 9
3 12.0 12.0 7
4 -2.0 2.0 2
5 4.6 4.6 4
6 -22 22 3
7 9.8 9.8 5
8 -0.2 0.2 1
9 10.8 10.8 6

4. Next we restore the + and — signs to the ranks of the absolute differences to
produce signed ranks, as shown in Table 8.5.3.
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Table 8.5.3
Animal Difference,d  Rank of |[d|  Signed rank
1 12.6 8 8
2 20.6 9 9
3 12.0 7 7
4 -2.0 2 -2
5 4.6 4 4
6 -22 3 -3
7 9.8 5 5
8 -0.2 1 -1
9 10.8 6 6

5. We sum the positive signed ranks to get W,; we sum the absolute values of the
negative signed ranks to get W_. For the nerve cell data,
W,=8+9+7+4+5+6=39and W_ =2+ 3 + 1 = 6. The test sta-
tistic, W, is defined as

W, = Larger of W, and W_

For the nerve cell data, W, = 39.

6. To find the P-value, we consult Table 8 (at the end of the book). Part of Table 8
is reproduced in Table 8.5.4.

Table 8.5.4 Critical values for the Wilcoxon signed-rank test when np = 9

n

0.20

0.10 0.05 0.02 0.01 0.002 0.001

9

35 0.164

37 0.098 40 0.039 42 0.020 44 0.0078

From Table 8.5.4, we see that for W, = 37 the P-value is 0.098. There is weak but
suggestive evidence (P = 0.098) that there is a difference in nerve cell density in the
two regions. (We reject Hy if o is 0.10 or larger.) ]

Bracketing the P-Value Like the sign test, the Wilcoxon signed-rank test has a
discrete null distribution. Certain critical value entries in Table 8 are blank; this situation
is familiar from our study of the Wilcoxon-Mann-Whitney test and the sign test. For ex-
ample, if np = 9, then the strongest possible evidence against H, occurs when all 9 dif-
ferences are positive (or when all 9 differences are negative), in which case W, = 45.
But the chance that W, will equal 45 when Hy)is true is (1/2)° + (1/2)°, which is approx-
imately 0.0039. Thus, it is not possible to have a two-tailed P-value smaller than 0.002,
let alone 0.001. This is why the last two entries are blank in the np = 9 row of Table 8.
Also note that if Wy = 34, for example, then the table only tells us that P > 0.20.

Directional Alternative To use Table 8 if the alternative hypothesis is directional,
we proceed with the familiar two-step procedure:

Step 1. Check directionality (see if the data deviate from H in the direction speci-
fied by H4).
(a) If not, the P-value is greater than 0.50.
(b) If so, proceed to step 2.

Step 2. The P-value is half what it would be if H 4 were nondirectional.
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Treatment of Zeros If any of the differences (Y; — Y,) are zero, then those data
points are deleted and the sample size is reduced accordingly. For example, if one
of the 9 differences in Example 8.5.1 had been zero, we would have deleted that
point when conducting the Wilcoxon test, so that the sample size would have
become 8.

Treatment of Ties If there are ties among the absolute values of the differences (in
step 3) we average the ranks of the tied values. If there are ties, then the P-value
given by the Wilcoxon signed-rank test is only approximate.

Applicability of the Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test can be used in any situation in which the D’s are in-
dependent of each other and come from a symmetric distribution; the distribution
need not be normal.* The null hypothesis of “no treatment effect” or “no difference
between populations” can be stated as

H[): Mp = 0

Sometimes the Wilcoxon signed-rank test can be carried out even with incomplete
information. For example, a Wilcoxon test is possible for the skin graft data of
Example 8.4.1. It is true that an exact value of d cannot be calculated for two of the
patients, but for both of these patients the difference is positive and is larger than
either of the negative differences. The data in Table 8.5.5 show that there only are
two negative differences. The smaller of these is —1, for patient 11. This is the small-
est difference in absolute value, so it has signed rank —1. The only other negative
signed rank is for patient 7; all of the other signed ranks are positive. (The rest of this
example is left as an exercise.)

Table 8.5.5 Skin graft survival times
HL-A COMPATIBILITY
Close Poor
Patient Y1 Y2 d=y —»m
1 37 29
2 19 13 6
3 57+ 15 42+
4 93 26 67
5 16 11 5
6 23 18 5
7 20 26 -6
8 63 43 20
9 29 18 11
10 60+ 42 18+
11 18 19 -1

As with the Wilcoxon-Mann-Whitney test for independent samples, there is a
procedure associated with the Wilcoxon signed-rank test that can be used to con-
struct a confidence interval for up. The procedure is beyond the scope of this book.

*Strictly speaking, the distribution must be continuous, which means that the probability of a tie is zero.
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In summary, when dealing with paired data we have three inference procedures:
the paired ¢ test, the Wilcoxon signed-rank test, and the sign test. The ¢ test requires
that the data come from a normally distributed population; if this condition is
met then the ¢ test is recommended, as it is more powerful than the Wilcoxon test or
sign test. The Wilcoxon test does not require normality but does require that the dif-
ferences come from a symmetric distribution and that they can be ranked; it has
more power than the sign test. The sign test is the least powerful of the three meth-
ods, but the most widely applicable, since it only requires that we determine whether
each difference is positive or negative.

Exercises 8.5.1-8.5.7

8.5.1 Use Table 8 to find the P-value for a Wilcoxon
signed-rank test (against a nondirectional alternative),
assuming that np = 7 and

(a) W, = 22
(b) W, =125
(c) W, =26
(d) W, = 28

8.5.2 Use Table 8 to find the P-value for a Wilcoxon
signed-rank test (against a nondirectional alternative),
assuming that np, = 12 and

(a) W, =55
(b) W, = 65
(c) W, =71
d) W, =73

8.5.3 The study described in Example 8.2.4, involving the
compound mCPP, included a group of nine men. The men
were asked to rate how hungry they were at the end of
each two-week period and differences were computed
(hunger rating when taking mCPP—hunger rating when
taking the placebo). Data for one of the subjects are not
available; the data for the other eight subjects are given
in the accompanying table.”> Analyze these data with a
Wilcoxon signed-rank test at the o = 0.10 level; use a
nondirectional alternative.

HUNGER RATING

MCPP PLACEBO DIFFERENCE

SUBJECT yi ¥2 d=y —»n
1 64 69 -5
2 119 112 7
3 0 28 —-28
4 48 95 —47
5 65 145 -80
6 119 112 7
7 149 141 8
8 NA NA NA
9 99 119 —-20

8.5.4 As part of the study described in Example 8.2.4
(and in Exercise 8.5.3), involving the compound mCPP,
weight change was measured for nine men. For each man
two measurements were made: weight change when tak-
ing mCPP and weight change when taking the placebo.
The data are given in the accompanying table.” Analyze
these data with a Wilcoxon signed-rank test at the
a = 0.05 level; use a nondirectional alternative.

WEIGHT CHANGE

MCPP PLACEBO DIFFERENCE
SUBJECT Vi Y2 d=y —»n
1 0.0 -1.1 1.1
2 —-1.1 0.5 -1.6
3 -1.6 0.5 -2.1
4 -0.3 0.0 -0.3
5 -1.1 -0.5 -0.6
6 —-0.9 1.3 -22
7 —-0.5 -14 0.9
8 0.7 0.0 0.7
9 -12 —-0.8 —0.4

8.5.5 Consider the skin graft data of Example 8.4.1.
Table 8.5.5, at the end of Section 8.5, shows the first steps
in conducting a Wilcoxon signed-rank test of the null
hypothesis that HL-A compatibility has no effect on graft
survival time. Complete this test. Use @ = 0.05 and use
the directional alternative that survival time tends to be
greater when compatibility score is close.

8.5.6 In an investigation of possible brain damage due
to alcoholism, an X-ray procedure known as a computer-
ized tomography (CT) scan was used to measure brain
densities in 11 chronic alcoholics. For each alcoholic, a
nonalcoholic control was selected who matched the alco-
holic on age, sex, education, and other factors. The brain
density measurements on the alcoholics and the matched
controls are reported in the accompanying table.”’ Use a
Wilcoxon signed-rank test to test the null hypothesis of
no difference against the alternative that alcoholism
reduces brain density. Let « = 0.01.
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PAIR_ ALCOHOLIC  CONTROL  DIFFERENCE subjects in Example 8.1.1.>! For this setting the differ-
1 40.1 413 12 ences do not follow a normal distribution, so a ¢ test
’ 185 402 1 would not be valid. Use a Wilcoxon signed-rank test to
: ) —17 test the null hypothesis of no difference against the alter-
3 36.9 37.4 —-0.5 native that caffeine has an effect on myocardial blood
4 414 46.1 —47 flow. Let « = 0.01.
5 40.6 439 -33
6 0n3 41.9 0.4 SUBJECT BASELINE CAFFEINE DIFFERENCE
7 372 39.9 97 1 3.43 2.72 0.71
8 386 40.4 18 2 3.08 2.94 0.14
9 385 386 —01 3 3.07 1.76 131
11 38.1 395 ~14 > 2:49 2 0.49
6 2.33 2.37 —0.
Mean 39.14 40.66 -1.52 0.04
D 172 256 158 7 2.31 2.35 —0.04
i i i 8 224 2.26 —0.02
. : 9 2.17 1.72 0.45
8.5.7 The study described in Example 8.1.1, on the effect
of caffeine on myocardial blood flow, had another com- 10 1.34 1.22 0.12
ponent in which 10 subjects had their blood flow meas- Mean 2.51 2.15 0.36
ured before and after consuming caffeine, but under SD 0.59 0.50 0.43

different environmental conditions than those for the

Example
8.6.1

8.6 Perspective

In this section we consider some limitations to the analysis of paired data.

Before—After Studies

Many studies in the life sciences compare measurements before and after some
experimental intervention, which can present another limitation. These studies can
be difficult to interpret, because the effect of the experimental intervention may be
confounded with other changes over time. For example, in Example 8.2.3 we found
significant evidence for a decrease in myocardial blood flow after taking caffeine,
but we noted that it is possible that blood flow would have decreased with the pas-
sage of time even if the subjects had not taken caffeine. One way to protect against
this difficulty is to use randomized concurrent controls, as in the following example.

Biofeedback and Blood Pressure A medical research team investigated the effective-
ness of a biofeedback training program designed to reduce high blood pressure.
Volunteers were randomly allocated to a biofeedback group or a control group. All
volunteers received health education literature and a brief lecture. In addition, the
biofeedback group received eight weeks of relaxation training, aided by biofeed-
back, meditation, and breathing exercises. The results for systolic blood pressure,
before and after the eight weeks, are shown in Table 8.6.1.%?

Let us analyze the before—after changes by paired ¢ tests at & = 0.05. In the
biofeedback group, the mean systolic blood pressure fell by 13.8 mm Hg. To evalu-
ate the statistical significance of this drop, the test statistic is

13.8

t,= —— =103
* 1.34
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Table 8.6.1 Results of biofeedback experiment

Systolic blood pressure (mm Hg)

Group n Before After Difference
Mean Mean Mean SE
Biofeedback 99 145.2 131.4 13.8 1.34
Control 93 144.2 140.2 4.0 1.30

which is highly significant (P-value << 0.0001). However, this result alone does not
demonstrate the effectiveness of the biofeedback training; the drop in blood pres-
sure might be partly or entirely due to other factors, such as the health education lit-
erature or the special attention received by all the participants. Indeed, a paired ¢
test applied to the control group gives
4.0
ts 130 3.08 0.001 < P-value < 0.01

Thus, the people who received no biofeedback training also experienced a sta-
tistically significant drop in blood pressure.

To isolate the effect of the biofeedback training, we can compare the experience
of the two treatment groups, using an independent-samples ¢ test on the two samples
of differences. We again choose a = 0.05.The difference between the mean changes
in the two groups is

13.8 — 4.0 = 9.8 mm Hg

and the standard error of this difference is

V1342 + 1.30° = 1.87

9.8
ty = 187 ~ 5.24

Thus, the ¢ statistic is

This test provides strong evidence (P < 0.0001) that the biofeedback program is ef-
fective. If the experimental design had not included the control group, then this last
crucial comparison would not have been possible, and the support for efficacy of
biofeedback would have been shaky indeed. ]

In analyzing real data, it is wise to keep in mind that the statistical methods we
have been considering address only limited questions.
The paired ¢ test is limited in two ways:

1. Itis limited to questions concerning D.
2. Itis limited to questions about aggregate differences.
The second limitation is very broad; it applies not only to the methods of this

chapter but also to those of Chapter 7 and to many other elementary statistical tech-
niques. We will discuss these two limitations separately.

Limitation of D

One limitation of the paired ¢ test and confidence interval is simple, but too often
overlooked: When some of the D’s are positive and some are negative, the magni-
tude of D does not reflect the “typical” magnitude of the D’s. The following example
shows how misleading D can be.
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Example
8.6.2

Measuring Serum Cholesterol Suppose a clinical chemist wants to compare two methods
of measuring serum cholesterol; she is interested in how closely the two methods
agree with each other. She takes blood specimens from 400 patients, splits each
specimen in half, and assays one half by method A and the other by method B.
Table 8.6.2 shows fictitious data, exaggerated to clarify the issue.

Table 8.6.2 Serum cholesterol (mg/dl)
Specimen  Method A Method B d=A-B
1 200 234 —34
2 284 272 +12
3 146 153 =7
4 263 250 +13
5 258 232 +26
400 176 190 —14
Mean 215.2 214.5 0.7
SD 45.6 59.8 18.8

In Table 8.6.2, the sample mean difference is small (d = 0.7). Furthermore,
the data indicate that the population mean difference is small (a 95% confidence
interval is —1.1 mg/dl < up < 2.5mg/dl). But such discussion of D or up does not
address the central question, which is: How closely do the methods agree? In fact,
Table 8.6.2 indicates that the two methods do not agree well; the individual differ-
ences between method A and method B are not small in magnitude. The mean d is
small because the positive and negative differences tend to cancel each other.
A graph similar to Figure 8.3.1 would be very helpful in visually determining
how well the methods agree. We would examine such a graph to see how closely
the points cluster around the y = x line as well as to see the spread in the boxplot
of differences. To make a numerical assessment of agreement between the meth-
ods we should not focus on the mean difference, D. It would be far more relevant
to analyze the absolute (unsigned) magnitudes of the d’s (that is, 34, 12, 7,13, 26,
and so on). These magnitudes could be analyzed in various ways: We could
average them, we could count how many are “large” (say, more than 10 mg/dl),
and so on. ]

Limitation of the Aggregate Viewpoint

Consider a paired experiment in which two treatments, say A and B, are applied to
the same person. If we apply a ¢ test, a sign test, or a Wilcoxon signed-rank test, we
are viewing the people as an ensemble rather than individually. This is appropriate if
we are willing to assume that the difference (if any) between A and B is in a consis-
tent direction for all people—or, at least, that the important features of the differ-
ence are preserved even when the people are viewed en masse. The following
example illustrates the issue.
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Treatment of Acne Consider a clinical study to compare two medicated lotions for
treating acne. Twenty patients participate. Each patient uses lotion A on one (ran-
domly chosen) side of his face and lotion B on the other side. After three weeks,
each side of the face is scored for total improvement.

First, suppose that the A side improves more than the B side in 10 patients,
while in the other 10 the B side improves more. According to a sign test, this result is
in perfect agreement with the null hypothesis. And yet, two very different interpre-
tations are logically possible:

Interpretation 1: Treatments A and B are in fact completely equivalent; their
action is indistinguishable. The observed differences between A and B sides of the
face were entirely due to chance variation.

Interpretation 2: Treatments A and B are in fact completely different. For some
people (about 50% of the population), treatment A is more effective than treat-
ment B, whereas in the remaining half of the population treatment B is more
effective. The observed differences between A and B sides of the face were
biologically meaningful.*

The same ambiguity of interpretation arises if the results favor one treatment
over another. For instance, suppose the A side improved more than the B side in 18
of the 20 cases, while B was favored in 2 patients. This result, which is statistically sig-
nificant (P < 0.001), could again be interpreted in two ways. It could mean that
treatment A is in fact superior to B for everybody, but chance variation obscured its
superiority in two of the patients; or it could mean that A is superior to B for most
people, but for about 10% of the population (2/10 = 0.10) B is superior to A. [

The difficulty illustrated by Example 8.6.3 is not confined to experiments
with randomized pairs. In fact, it is particularly clear in another type of paired
experiment—the measurement of change over time. Consider, for instance, the
blood pressure data of Example 8.6.1. Our discussion of that study hinged on an
aggregate measure of blood pressure: the mean. If some patients’ pressures rose as a
result of biofeedback and others fell, these details were ignored in the analysis
based on Student’s £; only the average change was analyzed.

The difficulties described previously aren’t only confined to human experi-
ments either. Suppose, for instance, that two fertilizers, A and B, are to be compared
in an agronomic field experiment using a paired design, with the data to be analyzed
by a paired ¢ test. If treatment A is superior to B on acid soils, but B is better than A
on alkaline soils, this fact would be obscured in an experiment that included soils of
both types.

The issue raised by the preceding examples is a very general one. Simple statis-
tical methods such as the sign test and the ¢ test are designed to evaluate treatment
effects in the aggregate—that is, collectively —for a population of people, or of mice,
or of plots of ground. The segregation of differential treatment effects in subpopula-
tions requires more delicate handling, both in design and analysis.

This confinement to the aggregate point of view applies to Chapter 7 (independ-
ent samples) even more forcefully than to the present chapter. For instance, if
treatment A is given to one group of mice and treatment B to another, it is quite
impossible to know how a mouse in group A would have responded if'it had received
treatment B; the only possible comparison is an aggregate one. In Section 7.11 we

*This may seem farfetched, but phenomena of this kind do occur; as an obvious example, consider the response
of patients to blood transfusions of type A or type B blood.
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stated that the statistical comparison of independent samples depends on an “implic-
it assumption”; essentially, the assumption is that the phenomenon under study can
be adequately perceived from an aggregate viewpoint.

In many, perhaps most, biological investigations the phenomena of interest are
reasonably universal, so that this issue of submerging the individual in the aggregate
does not cause a serious problem. Nevertheless, one should not lose sight of the fact
that aggregation may obscure important individual detail.

Reporting of Data

In communicating experimental results, it is desirable to choose a form of reporting
that conveys the extra information provided by pairing. With small samples, a graph-
ical approach can be used, as in Figure 8.1.1, where the line segments gave clear
visual evidence that blood flow decreased for each subject.

In published reports of biological research, the crucial information related to
pairing is often omitted. For instance, a common practice is to report the means and
standard deviations of Y; and Y, but to omit the standard deviation of the differ-
ence, D! This is a serious error. It is best to report some description of D, using either
a display like Figure 8.1.1, a histogram of the D’s, or at least the standard deviation

of the D’s.

Exercises 8.6.1-8.6.4

8.6.1 Thirty-three men with high serum cholesterol, all
regular coffee drinkers, participated in a study to see
whether abstaining from coffee would affect their choles-
terol level. Twenty-five of the men (chosen at random)
drank no coffee for five weeks, while the remaining
8 men drank coffee as usual. The accompanying table
shows the serum cholesterol levels (in mg/dl) at baseline
(at the beginning of the study) and the change from base-
line after five weeks.?

NO COFFEE (n = 25)  USUAL COFFEE (n = 8)

MEAN SD MEAN SD
Baseline 341 37 331 30
Change
from -35 27 +26 56
baseline

For the following ¢ tests use nondirectional alternatives
and let o = 0.05.

(a) The no-coffee group experienced a 35 mg/dl drop in
mean cholesterol level. Use a ¢ test to assess the sta-
tistical significance of this drop.

(b) The usual-coffee group experienced a 26 mg/dl rise

in mean cholesterol level. Use a ¢ test to assess the
statistical significance of this rise.

c¢) Use a ¢ test to compare the no-coffee mean change
p g
(—35) to the usual-coffee mean change (+26).

8.6.2 Eight young women participated in a study to in-
vestigate the relationship between the menstrual cycle
and food intake. Dietary information was obtained every
day by interview; the study was double-blind in the sense
that the participants did not know its purpose and the
interviewer did not know the timing of their menstrual
cycles. The table shows, for each participant, the average
caloric intake for the 10 days preceding and the 10 days
following the onset of the menstrual period (these data
are for one cycle only). For these data, prepare a display
like that of Figure 8.1.1.%4

FOOD INTAKE (CAL)

PARTICIPANT PREMENSTRUAL  POSTMENSTRUAL
1 2,378 1,706
2 1,393 958
3 1,519 1,194
4 2,414 1,682
5 2,008 1,652
6 2,092 1,260
7 1,710 1,239
8 1,967 1,758




8.6.3 For each of 29 healthy dogs, a veterinarian meas-
ured the glucose concentration in the anterior chamber
of the left eye and the right eye, with the results shown in
the table.”
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GLUCOSE (mg/dl)

GLUCOSE (mg/dl)

ANIMAL RIGHT LEFT ANIMAL RIGHT LEFT
NUMBER EYE EYE NUMBER EYE EYE
1 79 79 16 80 80
2 81 82 17 78 78
3 87 91 18 112 110
4 85 86 19 89 91
5 87 92 20 87 91
6 73 74 21 71 69
7 72 74 22 92 93
8 70 66 23 91 87
9 67 67 24 102 101
10 69 69 25 116 113
11 77 78 26 84 80
12 77 77 27 78 80
13 84 83 28 94 95
14 83 82 29 100 102
15 74 75

Using the paired t method, a 95% confidence interval for
the mean difference is —1.1 mg/dl < up < 0.7mg/dl.
Does this result suggest that, for the typical dog in the
population, the difference in glucose concentration be-
tween the two eyes is less than 1.1 mg/dl? Explain.

8.6.4 Tobramycin is a powerful antibiotic. To minimize
its toxic side effects, the dose can be individualized for
each patient. Thirty patients participated in a study of
the accuracy of this individualized dosing. For each pa-
tient, the predicted peak concentration of Tobramycin in
the blood serum was calculated, based on the patient’s
age, sex, weight, and other characteristics. Then To-
bramycin was administered and the actual peak concen-

Supplementary Exercises 8.5.1-8.5.23

tration (wg/ml) was measured. The results were reported
as in the table.”

PREDICTED ACTUAL
Mean 4.52 4.40
SD 0.90 0.85
n 30 30

Does the reported summary give enough information for
you to judge whether the individualized dosing is, on the
whole, accurate in its prediction of peak concentration?
If so, describe how you would make this judgment. If not,
describe what additional information you would need
and why.

8.S.1 A volunteer working at an animal shelter con-
ducted a study of the effect of catnip on cats at the shelter.
She recorded the number of “negative interactions” each
of 15 cats made in 15-minute periods before and after
being given a teaspoon of catnip. The paired measure-
ments were collected on the same day within 30 minutes
of one another; the data are given in the accompanying
table.”’

(a) Construct a 95% confidence interval for the differ-
ence in mean number of negative interactions.

(b) Construct a 95% confidence interval the wrong
way, using the independent-samples method. How
does this interval differ from the one obtained in
part (a)?
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BEFORE AFTER

CAT (YD) (Yy) DIFFERENCE
Amelia 0 0 0
Bathsheba 3 6 -3
Boris 3 4 -1
Frank 0 1 -1
Jupiter 0 0 0
Lupine 4 5 -1
Madonna 1 3 -2
Michelangelo 2 1 1
Oregano 3 5 -2
Phantom 5 7 -2
Posh 1 0 1
Sawyer 0 1 -1
Scary 3 5 -2
Slater 0 2 -2
Tucker 2 2 0
Mean 1.8 2.8 -1
SD 1.66 2.37 1.20

8.5.2 Refer to Exercise 8.S.1. Compare the before and
after populations using a ¢ test at a = 0.05. Use a nondi-
rectional alternative.

8.5.3 Refer to Exercise 8.S.1.

Compare the before and after populations using a sign test
at « = 0.05. Use a nondirectional alternative.

8.5.4 Refer to Exercise 8.S.1. Construct a scatterplot of
the data. Does the appearance of the scatterplot indicate
that the pairing was effective? Explain.

8.5.5 As part of a study of the physiology of wheat matu-
ration, an agronomist selected six wheat plants at random
from a field plot. For each plant, she measured the mois-
ture content in two batches of seeds: one batch from the
“central” portion of the wheat head, and one batch from
the “top” portion, with the results shown in the following
table.”® Construct a 90% confidence interval for the
mean difference in moisture content of the two regions of
the wheat head.

PERCENT MOISTURE

PLANT CENTRAL TOP
1 62.7 59.7
2 63.6 61.6
3 60.9 58.2
4 63.0 60.5
5 62.7 60.6
6 63.7 60.8

8.5.6 Biologists noticed that some stream fishes are
most often found in pools, which are deep, slow-moving
parts of the stream, while others prefer riffles, which are
shallow, fast-moving regions. To investigate whether
these two habitats support equal levels of diversity (i.e.,
equal numbers of species), they captured fish at 15 loca-
tions along a river. At each location, they recorded the
number of species captured in a riffle and the number
captured in an adjacent pool. The following table con-
tains the data.?’ Construct a 90% confidence interval
for the difference in mean diversity between the types
of habitats.

LOCATION POOL RIFFLE ~ DIFFERENCE
1 6 3 3
2 6 3 3
3 3 3 0
4 8 4 4
5 5 2 3
6 2 2 0
7 6 2 4
8 7 2 5
9 1 2 -1
10 3 2 1
11 4 3 1
12 5 1 4
13 4 3 1
14 6 2 4
15 4 3 1
Mean 4.7 2.5 2.2
SD 1.91 0.74 1.86

8.5.7 Refer to Exercise 8.S.6. What conditions are neces-
sary for the confidence interval to be valid? Are those
conditions satisfied? How do you know?

8.5.8 Refer to Exercise 8.5.6. Compare the habitats using
attestat a = 0.10. Use a nondirectional alternative.

8.5.9 Refer to Exercise 8.S.6.

(a) Compare the habitats using a sign test at « = 0.10.
Use a nondirectional alternative.

(b) Use the binomial formula to calculate the exact P-value
for part (a).

8.5.10 Refer to Exercise 8.S.6. Analyze these data using a
Wilcoxon signed-rank test.

8.S.11 Refer to the Wilcoxon signed-rank test from Exer-
cise 8.5.10. On what grounds could it be argued that the



P-value found in this test might not be accurate? This is,
why might it be argued that the Wilcoxon test P-value is
not a completely accurate measure of the strength of the
evidence against H, in this case?

8.S5.12 In a study of the effect of caffeine on muscle
metabolism, nine male volunteers underwent arm exer-
cise tests on two separate occasions. On one occasion,
the volunteer took a placebo capsule an hour before
the test; on the other occasion he received a capsule
containing pure caffeine. (The time order of the two oc-
casions was randomly determined.) During each exer-
cise test, the subject’s respiratory exchange ratio
(RER) was measured. The RER is the ratio of carbon
dioxide produced to oxygen consumed and is an indica-
tor of whether energy is being obtained from carbohy-
drates or from fats. The results are presented in the
accompanying table.>? Use a 1 test to assess the effect of
caffeine. Use a nondirectional alternative and let
a = 0.05.

RER (%)
SUBJECT PLACEBO CAFFEINE
1 105 96
2 119 99
3 57) 89
4 97 95
5 96 88
6 101 95
7 94 88
8 95 93
9 98 88

8.5.13 For the data of Exercise 8.S.12, construct a display
like that of Figure 8.1.1.

8.5.14 Refer to Exercise 8.S.12. Analyze these data using
a sign test.

8.5.15 Certain types of nerve cells have the ability to
regenerate a part of the cell that has been amputated.
In an early study of this process, measurements were
made on the nerves in the spinal cord in rhesus mon-
keys. Nerves emanating from the left side of the cord
were cut, while nerves from the right side were kept in-
tact. During the regeneration process, the content of
creatine phosphate (CP) was measured in the left and
the right portion of the spinal cord. The following table
shows the data for the right (control) side (Y7), and for
the left (regenerating) side (Y3). The units of measure-
ment are mg CP per 100 gm tissue.’! Use a ¢ test to
compare the two sides at @« = 0.05. Use a nondirection-
al alternative.
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RIGHT SIDE LEFT SIDE

ANIMAL  (CONTROL) (REGENERATING) DIFFERENCE
1 16.3 115 4.8
2 4.8 3.6 1.2
3 10.9 12.5 -1.6
4 14.2 6.3 7.9
5 16.3 15.2 1.1
6 9.9 8.1 1.8
7 29.2 16.6 12.6
8 22.4 13.1 9.3

Mean 15.50 10.86 4.64
SD 7.61 4.49 4.89

8.5.16 Aldosterone is a hormone involved in maintaining
fluid balance in the body. In a veterinary study, six dogs
with heart failure were treated with the drug Captopril,
and plasma concentrations of aldosterone were meas-
ured before and after the treatment. The results are given
in the following table.??> Use a sign test at @ = 0.10,and a
nondirectional alternative, to investigate the claim that
Captopril affects aldosterone level.

ANIMAL BEFORE AFTER  DIFFERENCE

1 749 374 375

2 469 300 169

3 343 146 197

4 314 134 180

5 286 69 217

6 223 20 203
Mean 397.3 173.8 223.5
SD 190.5 136.4 76.1

8.5.17 Refer to Exercise 8.5.16. Analyze these data using
a Wilcoxon signed-rank test.

8.5.18 Refer to Exercise 8.S.16. Note that the dogs in this
study are not compared to a control group. How does
this weaken any inference that might be made about the
effectiveness of Captopril?

8.5.19 (Computer exercise) For an investigation of the
mechanism of wound healing, a biologist chose a paired
design, using the left and right hindlimbs of the salaman-
der Notophthalmus viridescens. After amputating each
limb, she made a small wound in the skin and then kept
the limb for 4 hours in either a solution containing benza-
mil or a control solution. She theorized that the benzamil
would impair the healing. The accompanying table shows
the amount of healing, expressed as the area (mm?) cov-
ered with new skin after 4 hours.*>
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CONTROL  BENZAMIL CONTROL  BENZAMIL

ANIMAL LIMB LIMB ANIMAL LIMB LIMB
1 0.55 0.14 10 0.42 0.21
2 0.15 0.08 11 0.49 0.11
3 0.00 0.00 12 0.08 0.03
4 0.13 0.13 13 0.32 0.14
5 0.26 0.10 14 0.18 0.37
6 0.07 0.08 15 0.35 0.25
7 0.20 0.11 16 0.03 0.05
8 0.16 0.00 17 0.24 0.16
9 0.03 0.05

(a) Assess the effect of benzamil using a ¢ test at
a = 0.05. Let the alternative hypothesis be that the
researcher’s expectation is correct.

(b) Proceed as in part (a) but use a sign test.

(c) Construct a 95% confidence interval for the mean
effect of benzamil.

(d) Construct a scatterplot of the data. Does the appear-
ance of the scatterplot indicate that the pairing was
effective? Explain.

8.5.20 (Computer exercise) In a study of hypnotic sug-
gestion, 16 male volunteers were randomly allocated to
an experimental group and a control group. Each subject
participated in a two-phase experimental session. In the
first phase, respiration was measured while the subject
was awake and at rest. (These measurements were also
described in Exercises 7.5.6 and 7.10.4.) In the second
phase, the subject was told to imagine that he was per-
forming muscular work, and respiration was measured
again.

For subjects in the experimental group, hypnosis was
induced between the first and second phases; thus, the sug-
gestion to imagine muscular work was “hypnotic sugges-
tion” for experimental subjects and “waking suggestion”
for control subjects. The accompanying table shows the
measurements of total ventilation (liters of air per minute
per square meter of body area) for all 16 subjects.>*

(a) Use attest to compare the mean resting values in the
two groups. Use a nondirectional alternative and let
a = 0.05.This is the same as Exercise 7.5.6(a).

(b) Use suitable paired and unpaired ¢ tests to investi-
gate (i) the response of the experimental group to
suggestion; (ii) the response of the control group
to suggestion; (iii) the difference between the
responses of the experimental and control groups.
Use directional alternatives (suggestion increases
ventilation, and hypnotic suggestion increases it
more than waking suggestion) and let « = 0.05 for
each test.

EXPERIMENTAL GROUP CONTROL GROUP
SUBJECT  REST WORK | SUBJECT REST  WORK

1 5.74 6.24 9 6.21 5.50
2 6.79 9.07 10 4.50 4.64
3 5.32 7.77 11 4.86 4.61
4 7.18 16.46 12 4.78 3.78
5 5.60 6.95 13 4.79 5.41
6 6.06 8.14 14 5.70 5.32
7 6.32 11.72 15 5.41 4.54
8 6.34 8.06 16 6.08 5.98

(c) Repeat the investigations of part (b) using suitable
nonparametric tests (sign and Wilcoxon-Mann-
Whitney tests).

(d) Use suitable graphs to investigate the reasonable-
ness of the normality condition underlying the ¢ tests
of part (b). How does this investigation shed light
on the discrepancies between the results of parts
(b) and (c)?

8.5.21 Suppose we want to test whether an experimental
drug reduces blood pressure more than does a placebo.
We are planning to administer the drug or the placebo to
some subjects and record how much their blood pres-
sures are reduced. We have 20 subjects available.

(a) We could form 10 matched pairs, where we form a
pair by matching subjects, as best we can, on the basis
of age and sex, and then randomly assign one subject
in each pair to the drug and the other subject in the
pair to the placebo. Explain why using a matched
pairs design might be a good idea.

(b) Briefly explain why a matched pairs design might not
be a good idea. That is, how might such a design be
inferior to a completely randomized design?

8.5.22 A group of 20 postmenopausal women were given
transdermal estradiol for one month. Plasma levels of



plasminogen-activator inhibitor type 1 (PAI-1) went
down for 10 of the women and went up for the other
10 women.> Use a sign test to test the null hypothesis
that transdermal estradiol has no effect on PAI-1 level.
Use @ = 0.05 and use a nondirectional alternative.

8.5.23 Six patients with renal disease underwent plasma-
pheresis. Urinary protein excretion (grams of protein per
gram of creatinine) was measured for each patient before
and after plasmapheresis. The data are given in the fol-
lowing table.’® Use these data to investigate whether or
not plasmapheresis affects urinary protein excretion in
patients with renal disease. (Hint: Graph the data and
consider whether a ¢ test is appropriate in the original
scale.)
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PATIENT  BEFORE AFTER DIFFERENCE

1 20.3 0.8 19.5

2 9.3 0.1 9.2

3 7.6 3.0 4.6

4 6.1 0.6 5.5

5 5.8 0.9 4.9

6 4.0 0.2 38
Mean 8.9 0.9 7.9
SD 5.9 1.1 6.0




